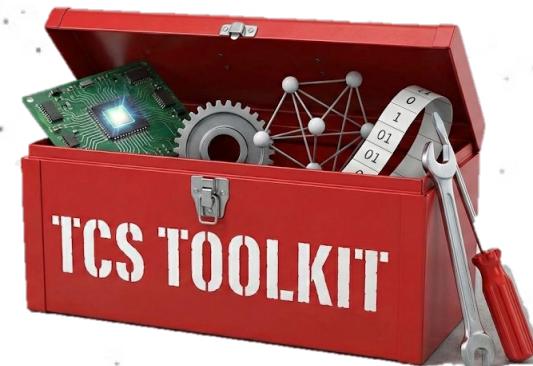


# CS 58500 – Theoretical Computer Science Toolkit

Lecture 4 (01/29)

Concentration Inequality III

[https://ruizhezhang.com/course\\_spring\\_2026.html](https://ruizhezhang.com/course_spring_2026.html)



# Recap

For a random variable  $Z$ , define its log-moment generating function  $\psi(\theta) := \log \mathbb{E}[e^{\theta(Z - \mathbb{E}[Z])}]$ .

$$\Pr[Z - \mathbb{E}[Z] \geq t] \leq \exp\left(\inf_{\theta \geq 0} -\theta t + \psi(\theta)\right)$$

Let  $X_1, \dots, X_n$  be independent random variables and  $Z := X_1 + \dots + X_n$

- **Hoeffding's inequality:** if  $a_i \leq X_i \leq b_i$  for  $i \in [n]$ , then

$$\Pr[|Z - \mathbb{E}[Z]| \geq t] \leq 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

- **Chernoff bound:** if  $X_i$ 's are Bernoulli random variables, then

$$\Pr[|Z - \mathbb{E}[Z]| \geq t\mathbb{E}[Z]] \leq 2 \exp(-t^2\mathbb{E}[Z]/3)$$

- **Bernstein's inequality:** if  $|X_i - \mathbb{E}[X_i]| \leq b$  for  $i \in [n]$ , then

$$\Pr[|Z - \mathbb{E}[Z]| \geq t] \leq 2 \exp\left(-\frac{t^2/2}{\text{Var}[Z] + bt/3}\right)$$

# Today's Lecture

- Tensorization of Variance (Revisited)
- Azuma-Hoeffding Inequality
- Applications
  - Pattern Matching
  - Learning Theory and Glivenko-Cantelli Theorem

# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X_i}, x_{i+1}, \dots, x_n)]$

# Detour: Conditional Expectation

Conditional expectation from introductory probability class

- Let  $X$  be a random variable with  $\mathbb{E}[|X|] < \infty$ , and  $Y$  be another random variable with  $\Pr[Y = y] > 0$
- Then we can define  $\mathbb{E}[X|Y = y] = \sum_x x \Pr[X = x, Y = y]/\Pr[Y = y]$
- $Z = \mathbb{E}[X|Y]$  is a random variable such that  $\Pr[Z = \mathbb{E}[X|Y = y]] = \Pr[Y = y]$

**Issue:** consider a 2-d Gaussian  $(X, Y) \sim \mathcal{N}(0, \Sigma)$  with probability density function  $g(x, y)$ . What is  $\mathbb{E}[X|Y = y]$ ? Intuitively, it is natural to define it as

$$\mathbb{E}[X|Y = y] = \frac{\int x g(x, y) dx}{\int g(x, y) dx}$$

However, for any  $y \in \mathbb{R}$ ,  $\Pr[Y = y] = 0$ !

- We need measure-theoretic probability theory, where  $\mathbb{E}[X|Y]$  is directly defined as a random variable (instead of for each  $Y = y$ ) satisfying  $\mathbb{E}[\mathbb{E}[X|Y]h(Y)] = \mathbb{E}[Xh(Y)]$  for any test function  $h$

# Detour: Conditional Expectation

## Useful properties of conditional expectation

- Tower property:

$$\mathbb{E}[\mathbb{E}[X|Y]|Y, Z] = \mathbb{E}[X|Y] = \mathbb{E}[\mathbb{E}[X|Y, Z]|Y]$$

- 

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$$

- 

$$\mathbb{E}[XY|X, Z] = X\mathbb{E}[Y|X, Z]$$

- For any invertible function  $f$ ,

$$\mathbb{E}[X|Y] = \mathbb{E}[X|f(Y)]$$

# Detour: Martingale

A sequence of random variables  $Z_1, Z_2, \dots$  is a **martingale** with respect to sequence  $X_1, X_2, \dots$  if for all  $i \geq 0$ ,

- $Z_i$  is a function of  $X_1, \dots, X_i$
- $\mathbb{E}[|Z_i|] < \infty$
- $\mathbb{E}[Z_{i+1}|X_1, \dots, X_i] = Z_i$

In particular, we say  $Z_1, Z_2, \dots$  is a martingale if it's a martingale with respect to itself.

## Example: Gambling

- Suppose a gambler places bets on a sequence of **fair games**: bets can increase/decrease based on history
- Let  $X_t$  be amount he wins at step  $t$  (could be negative)
- Let  $Z_t := \sum_{i \in [t]} X_i$  be total winning at end of  $t$ -th step
- $Z_1, Z_2, \dots$  is a martingale, since  $\mathbb{E}[Z_{i+1}|X_1, \dots, X_i] = Z_i + \mathbb{E}[X_{i+1}] = Z_i$

# Detour: Martingale

A sequence of random variables  $Z_1, Z_2, \dots$  is a **martingale** with respect to sequence  $X_1, X_2, \dots$  if for all  $i \geq 0$ ,

- $Z_i$  is a function of  $X_1, \dots, X_i$
- $\mathbb{E}[|Z_i|] < \infty$
- $\mathbb{E}[Z_{i+1}|X_1, \dots, X_i] = Z_i$

In particular, we say  $Z_1, Z_2, \dots$  is a martingale if it's a martingale with respect to itself.

**Lemma.** Let  $Z_1, Z_2, \dots$  be a martingale with respect to  $X_1, X_2, \dots$ . Then,

$$\mathbb{E}[Z_n] = \mathbb{E}[Z_{n-1}] = \dots = \mathbb{E}[Z_1]$$

*Proof.*

$$\mathbb{E}[Z_n] = \mathbb{E}[\mathbb{E}[Z_n|X_1, \dots, X_{n-1}]] = \mathbb{E}[Z_{n-1}]$$



# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X}_i, x_{i+1}, \dots, x_n)]$

*Proof.*

- For  $i \in [n]$ , define a new random variable  $\Delta_i$ :

$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$

- Notice the telescoping sum:

$$\sum_{i=1}^n \Delta_i = \sum_{i=1}^n (\mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]) = \mathbb{E}[Z|X_1, \dots, X_n] - \mathbb{E}[Z] = Z - \mathbb{E}[Z]$$

# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, X_i, x_{i+1}, \dots, x_n)]$

*Proof.*

- For  $i \in [n]$ , define a new random variable  $\Delta_i$ :

$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$

- Moreover, for  $i \in [n]$ ,

$$\begin{aligned} \mathbb{E}[\Delta_i|X_1, \dots, X_{i-1}] &= \mathbb{E}[\mathbb{E}[Z|X_1, \dots, X_i]|X_1, \dots, X_{i-1}] - \mathbb{E}[\mathbb{E}[Z|X_1, \dots, X_{i-1}]|X_1, \dots, X_{i-1}] \\ &= \mathbb{E}[Z|X_1, \dots, X_{i-1}] - \mathbb{E}[Z|X_1, \dots, X_{i-1}] = 0 \end{aligned}$$

- We say  $\Delta_1, \dots, \Delta_n$  are **martingale difference**

# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X}_i, x_{i+1}, \dots, x_n)]$

*Proof.*

- For  $i \in [n]$ , define a new random variable  $\Delta_i$ :

$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$

- $\mathbb{E}[Z], \mathbb{E}[Z|X_1], \mathbb{E}[Z|X_1, X_2], \dots, \mathbb{E}[Z|X_1, \dots, X_n]$  is a **martingale** w.r.t.  $X_1, \dots, X_n$  (**Doob martingale**)
- $\mathbb{E}[\Delta_i|X_1, \dots, X_{i-1}] = \mathbb{E}[\mathbb{E}[Z|X_1, \dots, X_i]|X_1, \dots, X_{i-1}] - \mathbb{E}[Z|X_1, \dots, X_{i-1}] = 0$
- For any  $j < i$ ,  $\mathbb{E}[\Delta_i \Delta_j] = \mathbb{E}[\mathbb{E}[\Delta_i \Delta_j|X_1, \dots, X_{i-1}]] = \mathbb{E}[\mathbb{E}[\Delta_i|X_1, \dots, X_{i-1}] \Delta_j] = 0$

(tower property)

# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X_i}, x_{i+1}, \dots, x_n)]$

*Proof.*

- For  $i \in [n]$ , define a new random variable  $\Delta_i$ :

$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$

- $Z - \mathbb{E}[Z] = \sum_{i \in [n]} \Delta_i$

- For any  $i \neq j$ ,  $\mathbb{E}[\Delta_i \Delta_j] = 0$

$$\text{Var}[Z] = \mathbb{E}[(Z - \mathbb{E}[Z])^2] = \mathbb{E} \left[ \left( \sum_{i \in [n]} \Delta_i \right)^2 \right] = \sum_{i \in [n]} \mathbb{E}[\Delta_i^2]$$

# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X}_i, x_{i+1}, \dots, x_n)]$

*Proof.*

- For  $i \in [n]$ , define a new random variable  $\Delta_i$ :

$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$

- It remains to show that  $\mathbb{E}[\Delta_i^2] \leq \mathbb{E}[\text{Var}_i[Z]]$  for any  $i \in [n]$ :

$$\begin{aligned} \mathbb{E}[Z|X_1, \dots, X_{i-1}] &= \mathbb{E}[\mathbb{E}[Z|X_1, \dots, X_{i-1}, \textcolor{red}{X}_{i+1}, \dots, \textcolor{red}{X}_n]|X_1, \dots, X_{i-1}] \\ &= \mathbb{E}[\mathbb{E}[Z|X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]|X_1, \dots, X_{i-1}, \textcolor{red}{X}_i] \end{aligned}$$

- Define  $\tilde{\Delta}_i := Z - \mathbb{E}[Z|X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$ . We have  $\mathbb{E}[\tilde{\Delta}_i|X_1, \dots, X_i] = \Delta_i$

# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X}_i, x_{i+1}, \dots, x_n)]$

*Proof.*

- For  $i \in [n]$ , define a new random variable  $\Delta_i$ :

$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$

- Define  $\tilde{\Delta}_i := Z - \mathbb{E}[Z|X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$ . We have  $\mathbb{E}[\tilde{\Delta}_i|X_1, \dots, X_i] = \Delta_i$
- Since  $X_i$  and  $\{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$  are independent,

$$\begin{aligned} \text{Var}_i[Z] &= \mathbb{E} \left[ \tilde{\Delta}_i^2 \middle| X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n \right] \\ \Rightarrow \mathbb{E}[\Delta_i^2] &= \mathbb{E} \left[ \mathbb{E}[\tilde{\Delta}_i^2|X_1, \dots, X_i] \right] \leq \mathbb{E} \left[ \mathbb{E} \left[ \tilde{\Delta}_i^2 \middle| X_1, \dots, X_i \right] \right] = \mathbb{E}[\tilde{\Delta}_i^2] = \mathbb{E}[\text{Var}_i[Z]] \end{aligned}$$



# Tensorization of Variance (Revisited)

**Theorem.** Suppose  $X_1, \dots, X_n$  are independent random variables. Let  $Z = f(X_1, \dots, X_n)$ . Then

$$\text{Var}[Z] \leq \mathbb{E} \left[ \sum_{i=1}^n \text{Var}_i[Z] \right]$$

where  $\text{Var}_i[Z](x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X_i}, x_{i+1}, \dots, x_n)]$

The key idea of the proof is to decompose

$$f(X_1, \dots, X_n) - \mathbb{E}[f(X_1, \dots, X_n)] = \sum_{i=1}^n \Delta_i$$

And using the martingale difference property,  $\text{Var}[f] = \sum_{i=1}^n \mathbb{E}[\Delta_i^2]$

# Today's Lecture

- Tensorization of Variance (Revisited)
- Azuma-Hoeffding Inequality
- Applications
  - Pattern Matching
  - Learning Theory and Glivenko-Cantelli Theorem

# Azuma-Hoeffding Inequality

Let  $\Delta_1, \Delta_2, \dots, \Delta_n$  be martingale differences and  $a_i \leq \Delta_i \leq b_i$  for any  $i \in [n]$ . Then

$$\Pr \left[ \left| \sum_{i=1}^n \Delta_i \right| \geq t \right] \leq 2 \exp \left( -\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2} \right) \quad \forall t > 0$$

- If we take  $\Delta_i = X_i - \mathbb{E}[X_i]$  for independent random variables  $X_1, \dots, X_n$  (Think: why are they martingale differences?)
- We recover the Hoeffding inequality:

$$\Pr \left[ \left| \sum_{i=1}^n (X_i - \mathbb{E}[X_i]) \right| \geq t \right] \leq 2 \exp \left( -\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2} \right)$$

# Azuma-Hoeffding Inequality

Let  $\Delta_1, \Delta_2, \dots, \Delta_n$  be martingale differences and  $a_i \leq \Delta_i \leq b_i$  for any  $i \in [n]$ . Then

$$\Pr \left[ \left| \sum_{i=1}^n \Delta_i \right| \geq t \right] \leq 2 \exp \left( -\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2} \right) \quad \forall t > 0$$

*Proof.*

- Let  $Z := \sum_{i=1}^n \Delta_i$ . Then  $\mathbb{E}[Z] = 0$  and

$$\Pr[Z \geq t] \leq \exp \left( \inf_{\theta \geq 0} -\theta t + \psi(\theta) \right)$$

- We just need to bound the log-MGF:

$$\psi(\theta) := \log \mathbb{E}[e^{\theta Z}] = \log \mathbb{E}[e^{\theta \sum_{i=1}^n \Delta_i}]$$

- This is the only step that is different from Hoeffding inequality's proof

# Azuma-Hoeffding Inequality

Let  $\Delta_1, \Delta_2, \dots, \Delta_n$  be martingale differences and  $a_i \leq \Delta_i \leq b_i$  for any  $i \in [n]$ . Then

$$\Pr \left[ \left| \sum_{i=1}^n \Delta_i \right| \geq t \right] \leq 2 \exp \left( -\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2} \right) \quad \forall t > 0$$

*Proof.*

- We just need to bound the log-MGF:

$$\psi(\theta) := \log \mathbb{E}[e^{\theta Z}] = \log \mathbb{E}[e^{\theta \sum_{i=1}^n \Delta_i}]$$

- Suppose  $\mathbb{E}[\Delta_i | X_1, \dots, X_{i-1}] = 0$  for any  $i \in [n]$ , i.e.,  $\Delta_1, \dots, \Delta_n$  are martingale differences w.r.t.  $X_1, \dots, X_n$
- By the tower property,

$$\mathbb{E}[e^{\theta \sum_{i=1}^n \Delta_i}] = \mathbb{E} \left[ e^{\theta \sum_{i=1}^{n-1} \Delta_i} \mathbb{E}[e^{\theta \Delta_n} | X_1, \dots, X_{n-1}] \right]$$

# Azuma-Hoeffding Inequality

Let  $\Delta_1, \Delta_2, \dots, \Delta_n$  be martingale differences and  $a_i \leq \Delta_i \leq b_i$  for any  $i \in [n]$ . Then

$$\Pr \left[ \left| \sum_{i=1}^n \Delta_i \right| \geq t \right] \leq 2 \exp \left( -\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2} \right) \quad \forall t > 0$$

*Proof.*

- By the tower property,

$$\mathbb{E}[e^{\theta \sum_{i=1}^n \Delta_i}] = \mathbb{E} \left[ e^{\theta \sum_{i=1}^{n-1} \Delta_i} \mathbb{E}[e^{\theta \Delta_n} | X_1, \dots, X_{n-1}] \right]$$

- Using the same argument as in the Hoeffding inequality's proof,

$$\mathbb{E}[e^{\theta \Delta_n} | X_1, \dots, X_{n-1}] \leq e^{(b_n - a_n)^2/8}$$

$$\mathbb{E}[e^{\theta \sum_{i=1}^n \Delta_i}] \leq e^{(b_n - a_n)^2/8} \mathbb{E} \left[ e^{\theta \sum_{i=1}^{n-1} \Delta_i} \right] \leq \dots \leq e^{\sum_{i=1}^n (b_n - a_n)^2/8}$$

# Azuma-Hoeffding Inequality

Let  $\Delta_1, \Delta_2, \dots, \Delta_n$  be martingale differences and  $a_i \leq \Delta_i \leq b_i$  for any  $i \in [n]$ . Then

$$\Pr \left[ \left| \sum_{i=1}^n \Delta_i \right| \geq t \right] \leq 2 \exp \left( -\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2} \right) \quad \forall t > 0$$

*Proof.*

$$\mathbb{E} \left[ e^{\theta \sum_{i=1}^n \Delta_i} \right] \leq e^{(b_n - a_n)^2/8} \mathbb{E} \left[ e^{\theta \sum_{i=1}^{n-1} \Delta_i} \right] \leq \dots \leq e^{\sum_{i=1}^n (b_n - a_n)^2/8}$$

- Thus,  $\psi(\theta) = \log \mathbb{E} \left[ e^{\theta \sum_{i=1}^n \Delta_i} \right] \leq \sum_{i=1}^n (b_n - a_n)^2/8$

■

This result can be generalized to case when  $a_i, b_i$  are random variables that may depend on  $X_1, \dots, X_{i-1}$ , and  $\Pr[a_i \leq \Delta_i \leq b_i] = 1$  (i.e.,  $a_i \leq \Delta_i \leq b_i$  almost surely or a.s.).

# Azuma-Hoeffding Inequality

Let  $\Delta_1, \Delta_2, \dots, \Delta_n$  be martingale differences and  $A_i \leq \Delta_i \leq B_i$  a.s. for any  $i \in [n]$ . Then

$$\Pr \left[ \left| \sum_{i=1}^n \Delta_i \right| \geq t \right] \leq 2 \exp \left( - \frac{2t^2}{\sum_{i=1}^n \|B_i - A_i\|_\infty^2} \right) \quad \forall t > 0$$

where  $\|B_i - A_i\|_\infty := \inf\{c \geq 0 : \Pr[|B_i - A_i| \leq c] = 1\}$

# Bounded Differences

Recall that

**Corollary.** For  $Z = f(X_1, \dots, X_n)$ , define the  $i$ -th discrete partial derivative as:

$$(D_i f)(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \sup_{z \in \text{supp}(X_i)} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n) - \inf_{z \in \text{supp}(X_i)} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

Then,

$$\text{Var}[Z] \leq \frac{1}{4} \sum_{i=1}^n \mathbb{E}[(D_i f)^2]$$

We say  $f$  satisfies the **bounded differences property** if there exist  $c_1, c_2, \dots, c_n \in \mathbb{R}$  such that

$$\|(D_i f)(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)\|_\infty \leq c_i \quad \forall i \in [n]$$

# McDiarmid Inequality

Let  $X_1, \dots, X_n$  be independent random variables and  $f(x_1, \dots, x_n)$  be such that satisfies the bounded differences property with  $c_1, \dots, c_n$ . Then

$$\Pr[|f(X_1, \dots, X_n) - \mathbb{E}[f(X_1, \dots, X_n)]| \geq t] \leq 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

*Proof.*

- We still use the decomposition:  $f - \mathbb{E}[f] = \sum_{i=1}^n \Delta_i$ , where  $\Delta_1, \dots, \Delta_n$  are martingale differences:  
$$\Delta_i := \mathbb{E}[f(X_1, \dots, X_n) | X_1, \dots, X_i] - \mathbb{E}[f(X_1, \dots, X_n) | X_1, \dots, X_{i-1}]$$
- We need to find random variables  $A_i, B_i$  such that  $A_i \leq \Delta_i \leq B_i$

$$A_i := \mathbb{E}\left[\inf_z f(X_1, \dots, X_{i-1}, z, X_{i+1}, \dots, X_n) \mid X_1, \dots, X_{i-1}\right] - \mathbb{E}[f(X_1, \dots, X_n) | X_1, \dots, X_{i-1}]$$
$$B_i := \mathbb{E}\left[\sup_z f(X_1, \dots, X_{i-1}, z, X_{i+1}, \dots, X_n) \mid X_1, \dots, X_{i-1}\right] - \mathbb{E}[f(X_1, \dots, X_n) | X_1, \dots, X_{i-1}]$$

# McDiarmid Inequality

Let  $X_1, \dots, X_n$  be independent random variables and  $f(x_1, \dots, x_n)$  be such that satisfies the bounded differences property with  $c_1, \dots, c_n$ . Then

$$\Pr[|f(X_1, \dots, X_n) - \mathbb{E}[f(X_1, \dots, X_n)]| \geq t] \leq 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

*Proof.*

$$\begin{aligned}\Delta_i - A_i &= \mathbb{E}[f(X_1, \dots, X_n) | X_1, \dots, X_i] - \mathbb{E}\left[\inf_z f(X_1, \dots, X_{i-1}, z, X_{i+1}, \dots, X_n) \mid X_1, \dots, X_{i-1}\right] \\ &= \mathbb{E}\left[f(X_1, \dots, X_n) - \inf_z f(X_1, \dots, X_{i-1}, z, X_{i+1}, \dots, X_n) \mid X_1, \dots, X_i\right] \\ &\geq 0\end{aligned}$$

- Then, we have

$$|B_i - A_i| = \mathbb{E}[|(D_i f)(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)| \mid X_1, \dots, X_{i-1}] \leq c_i$$

- Then we complete the proof by Azuma-Hoeffding inequality



# Today's Lecture

- Tensorization of Variance (Revisited)
- Azuma-Hoeffding Inequality
- Applications
  - Pattern Matching
  - Learning Theory and Glivenko-Cantelli Theorem

# Application 1: Pattern Matching

- Let  $X_1, \dots, X_n \in \Sigma$  be a sequence of tokens generated uniformly at random (a trivial language model)
- Let  $A = (a_1, \dots, a_k) \in \Sigma^k$  be a fixed length- $k$  token sequence
- Let  $Z$  be the number of occurrences of  $A$

➤ What is the expectation of  $Z$ ?

$$\mathbb{E}[Z] = (n - k + 1) \cdot |\Sigma|^{-k}$$

➤ What is  $\Pr[|Z - \mathbb{E}[Z]|]$ ?

- Consider the martingale differences:
$$\Delta_i := \mathbb{E}[Z|X_1, \dots, X_i] - \mathbb{E}[Z|X_1, \dots, X_{i-1}]$$
- Check by yourself that  $|\Delta_i| \leq k$
- Azuma implies that

$$\Pr[|Z - \mathbb{E}[Z]| \geq t] \leq 2e^{-t^2/(2nk^2)}$$

# Learning Theory Basics

- For a function  $f \in \mathcal{F}$ , the **empirical risk** (with iid data samples  $\{(x_i, y_i)\}_{i \in [n]}$ ) is

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- The **empirical risk minimizing (ERM)** function is  $f_n := \arg \min_{f \in \mathcal{F}} \hat{R}(f)$
- The true performance (the expected risk) of  $f$  is

$$R(f) = \mathbb{E}_{(x,y) \in \mathcal{D}} [\ell(f(x), y)]$$

and we define  $f^* := \arg \min_{f \in \mathcal{F}} R(f)$

- We want to control the excess risk:

$$R(f_n) - R(f^*) = \underbrace{R(f_n) - \hat{R}(f_n)}_{\text{Uniform laws of large numbers for } \mathcal{F}} + \underbrace{\hat{R}(f_n) - \hat{R}(f^*)}_{\leq 0 \text{ by ERM}} + \underbrace{\hat{R}(f^*) - R(f^*)}_{\text{LLN for } f^*}$$

# Learning Theory Basics

- For a function  $f \in \mathcal{F}$ , the **empirical risk** (with iid data samples  $\{(x_i, y_i)\}_{i \in [n]}$ ) is

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- The **empirical risk minimizing (ERM)** function is  $f_n := \arg \min_{f \in \mathcal{F}} \hat{R}(f)$
- The true performance (the expected risk) of  $f$  is

$$R(f) = \mathbb{E}_{(x,y) \in \mathcal{D}} [\ell(f(x), y)]$$

and we define  $f^* := \arg \min_{f \in \mathcal{F}} R(f)$

$$\hat{R}(f^*) - R(f^*) = \sum_{i=1}^n \frac{1}{n} \ell(f^*(\textcolor{red}{x}_i), y_i) - \mathbb{E}[\ell(f^*(x), y)]$$

- For a bounded loss function  $\ell$ , Hoeffding's inequality implies that this error converges to 0 w.h.p.

# Learning Theory Basics

- For a function  $f \in \mathcal{F}$ , the **empirical risk** (with iid data samples  $\{(x_i, y_i)\}_{i \in [n]}$ ) is

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- The **empirical risk minimizing (ERM)** function is  $f_n := \arg \min_{f \in \mathcal{F}} \hat{R}(f)$
- The true performance (the expected risk) of  $f$  is

$$R(f) = \mathbb{E}_{(x,y) \in \mathcal{D}} [\ell(f(x), y)]$$

and we define  $f^* := \arg \min_{f \in \mathcal{F}} R(f)$

- The first term  $R(f_n) - \hat{R}(f_n)$  is more interesting.  $f_n$  is a random function depending on  $\{(x_i, y_i)\}_{i \in [n]}$
- We can upper bound it by  $R(f_n) - \hat{R}(f_n) \leq \sup_{f \in \mathcal{F}} |R(f) - \hat{R}(f)|$
- The **uniform laws of large numbers** provide an upper bound for the excess risk for **all** functions

# Glivenko-Cantelli Theorem

Let  $X_1, X_2, \dots$  be iid random variables with the cumulative distribution function (CDF)  $F(x)$

Define the empirical distribution function for  $X_1, \dots, X_n$  as

$$F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}[X_i \leq x]$$

Then,  $\|F_n - F\|_\infty = \sup_x |F_n(x) - F(x)| \xrightarrow{a.s.} 0$

- Let  $P$  be the distribution of each  $X_i$ , and  $P_n$  be the empirical distribution (with CDF  $F_n$ )
- GC theorem implies that  $\sup_x |F_n(x) - F(x)| = \sup_x \left| \Pr_{X \sim P_n} [X \leq x] - \Pr_{X \sim P} [X \leq x] \right| \xrightarrow{a.s.} 0$
- Define a function class  $G := \{\mathbf{1}[x \leq t] : t \in \mathbb{R}\}$
- Then, GC theorem  $\Leftrightarrow \sup_{g \in G} |\mathbb{E}_{P_n}[g] - \mathbb{E}_P[g]| =: \|P_n - P\|_G \xrightarrow{a.s.} 0$

# Glivenko-Cantelli Theorem

Let  $X_1, X_2, \dots$  be iid random variables with the cumulative distribution function (CDF)  $F(x)$

Define the empirical distribution function for  $X_1, \dots, X_n$  as

$$F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}[X_i \leq x]$$

Then,  $\|F_n - F\|_\infty = \sup_x |F_n(x) - F(x)| \xrightarrow{a.s.} 0$

*Proof (Key ideas).*

1. **Concentration:**  $\|P_n - P\|_G \approx \mathbb{E}[\|P_n - P\|_G]$  w.h.p.
2. **Symmetrization:**  $\mathbb{E}[\|P_n - P\|_G] \leq 2\mathbb{E}[\|R_n\|_G]$  where  $\mathbb{E}_{R_n}[g] := (1/n) \sum_{i=1}^n \epsilon_i g(X_i)$  (**Rademacher process**)
3. **Restriction:**  $G$  restricted to a finite-sized set to bound the Rademacher averages

# Glivenko-Cantelli Theorem: Concentration

$$\|P_n - P\|_G = \sup_{g \in G} |\mathbb{E}_{P_n}[g(X)] - \mathbb{E}_P[g(X)]| = \sup_{g \in G} \left| \sum_{i=1}^n \frac{1}{n} \mathbf{1}[X_i \leq t] - \mathbb{E}_P[g(X)] \right|$$

- $\|P_n - P\|_G$  is a function of  $X_1, \dots, X_n$
- It has the bounded differences property:

$$\sup_z \|P_n - P\|_G(X_1, \dots, X_{i-1}, z, X_{i+1}, \dots, X_n) - \inf_z \|P_n - P\|_G(X_1, \dots, X_{i-1}, z, X_{i+1}, \dots, X_n) \leq \frac{1}{n}$$

- McDiarmid inequality: with probability at least  $1 - \exp(-2\epsilon^2 n)$ ,

$$\|P_n - P\|_G \leq \mathbb{E}[\|P_n - P\|_G] + \epsilon$$

# Glivenko-Cantelli Theorem: Symmetrization

- Note that for iid samples  $X'_1, \dots, X'_n$ ,  $\mathbb{E} \left[ \frac{1}{n} \sum_{i=1}^n g(X'_i) \right] = \mathbb{E}_P[g]$
- Thus, we can introduce another  $n$  iid samples  $X'_1, \dots, X'_n$ , and get that

$$\begin{aligned}\mathbb{E}[\|P_n - P\|_G] &= \mathbb{E}_{X_i} \left[ \sup_{g \in G} \left| \mathbb{E}_{X'_i} \left[ \frac{1}{n} \sum_{i=1}^n (g(X_i) - g(X'_i)) \right] \right| \right] \\ &\leq \mathbb{E}_{X_i} \mathbb{E}_{X'_i} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n (g(X_i) - g(X'_i)) \right| \right] \\ &= \mathbb{E}[\|P_n - P'_n\|_G]\end{aligned}$$

- The second step follows from Jensen inequality and the fact that  $\sup |\cdot|$  is convex

# Glivenko-Cantelli Theorem: Symmetrization

- Since  $\{X_i, X'_i\}$  are iid, for any  $\epsilon_i \in \{-1, 1\}$ ,

$$\mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n (g(X_i) - g(X'_i)) \right| \right] = \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (g(X_i) - g(X'_i)) \right| \right]$$

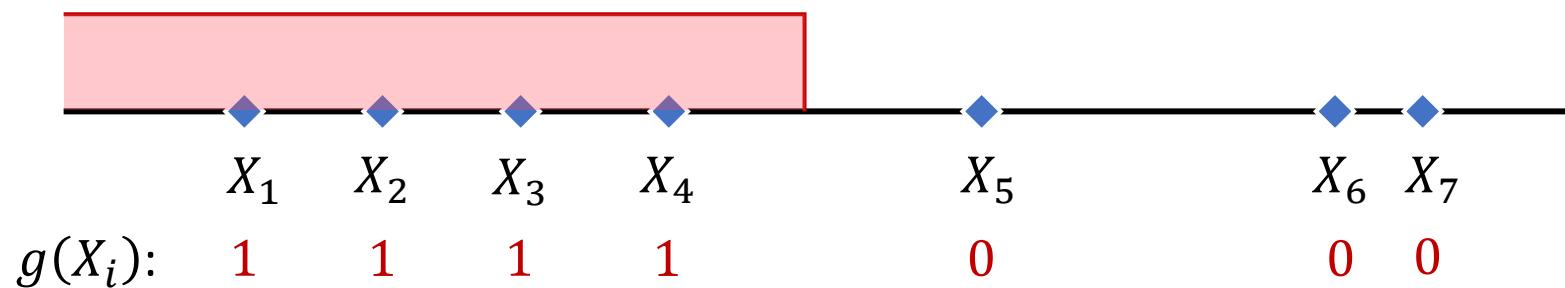
- The equality still holds if we take the expectation over  $\epsilon_i \sim_{iid} \{-1, 1\}$  uniformly at random

$$\begin{aligned} \mathbb{E}[\|P_n - P\|_G] &= \mathbb{E}_{X_i, X'_i, \epsilon_i} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (g(X_i) - g(X'_i)) \right| \right] \\ &\leq \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X_i) \right| \right] + \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X'_i) \right| \right] \\ &= 2 \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X_i) \right| \right] =: 2 \mathbb{E}[\|R_n\|_G] \end{aligned}$$

# Glivenko-Cantelli Theorem: Restriction

$$\mathbb{E}[\|R_n\|_G] = \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X_i) \right| \right]$$

- $G = \{\mathbf{1}[x \leq t] : t \in \mathbb{R}\}$  has  $\infty$ -many elements
- For any fixed  $X_1, \dots, X_n \in \mathbb{R}$ , the restriction  $G(X_1, \dots, X_n) = \{g(X_1), \dots, g(X_n)\} : g \in G\}$  has only  $n + 1$  elements!



# Glivenko-Cantelli Theorem: Restriction

$$\mathbb{E}[\|R_n\|_G] = \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X_i) \right| \right]$$

- $G = \{\mathbf{1}[x \leq t] : t \in \mathbb{R}\}$  has  $\infty$ -many elements
- For any fixed  $X_1, \dots, X_n \in \mathbb{R}$ , the restriction  $G(X_1, \dots, X_n) = \{g(X_1), \dots, g(X_n) : g \in G\}$  has only  $n + 1$  elements!

**Lemma (Rademacher averages).** For a **finite** subset  $A \subseteq \mathbb{R}^n$  and  $\sigma^2 := \max_{a \in A} \|a\|_2^2/n$ ,

$$\mathbb{E}_{\epsilon_i \sim \{\pm 1\}} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \leq \sqrt{\frac{2\sigma^2 \log|A|}{n}}$$

$$\mathbb{E} \left[ \sup_{a \in A} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i a_i \right| \right] = \mathbb{E} \left[ \sup_{a \in A \cup (-A)} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \leq \sqrt{\frac{2\sigma^2 \log(2|A|)}{n}}$$

# Glivenko-Cantelli Theorem: Restriction

$$\mathbb{E}[\|R_n\|_G] = \mathbb{E} \left[ \sup_{g \in G} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i g(X_i) \right| \right]$$

- $G = \{\mathbf{1}[x \leq t] : t \in \mathbb{R}\}$  has  $\infty$ -many elements
- For any fixed  $X_1, \dots, X_n \in \mathbb{R}$ , the restriction  $G(X_1, \dots, X_n) = \{g(X_1), \dots, g(X_n)\} : g \in G\}$  has only  $n + 1$  elements!

**Lemma (Rademacher averages).** For a **finite** subset  $A \subseteq \mathbb{R}^n$  and  $\sigma^2 := \max_{a \in A} \|a\|_2^2 / n$ ,

$$\mathbb{E} \left[ \sup_{a \in A} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i a_i \right| \right] \leq \sqrt{\frac{2\sigma^2 \log(2|A|)}{n}}$$

- In our case,  $|A| \leq n + 1$  and  $\sigma^2 \leq n/n = 1$ :

$$\mathbb{E}[\|R_n\|_G] \leq \sqrt{\frac{2 \log(2(n + 1))}{n}}$$

# Glivenko-Cantelli Theorem: Putting Together

- Concentration:

$$\Pr[\|P_n - P\|_G \leq \mathbb{E}[\|P_n - P\|_G] + \epsilon] \geq 1 - \exp(-2\epsilon^2 n)$$

- Symmetrization:

$$\mathbb{E}[\|P_n - P\|_G] \leq 2\mathbb{E}[\|R_n\|_G]$$

- Restriction:

$$\|R_n\|_G \leq \sqrt{\frac{2 \log(2(n+1))}{n}}$$

- Therefore,

$$\Pr\left[\|P_n - P\|_G \leq \sqrt{\frac{8 \log(2(n+1))}{n}} + \epsilon\right] \geq 1 - e^{-2\epsilon^2 n}$$

■

# Proof of Rademacher Averages Lemma

**Lemma (Rademacher averages).** For a **finite** subset  $A \subseteq \mathbb{R}^n$  and  $\sigma^2 := \max_{a \in A} \|a\|_2^2/n$ ,

$$\mathbb{E}_{\epsilon_i \sim \{\pm 1\}} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \leq \sqrt{\frac{2\sigma^2 \log|A|}{n}}$$

*Proof.*

- Consider the MGF:

$$\begin{aligned} \exp \left( \theta \mathbb{E} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \right) &\leq \mathbb{E} \left[ \exp \left( \theta \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right) \right] = \mathbb{E} \left[ \sup_{a \in A} \exp \left( \theta \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right) \right] \\ &\leq \sum_{a \in A} \mathbb{E} \left[ \exp \left( \theta \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right) \right] = \sum_{a \in A} \prod_{i=1}^n \mathbb{E} \left[ \exp \left( \frac{\theta a_i}{n} \epsilon_i \right) \right] \\ &\stackrel{\text{(Hoeffding)}}{\leq} \sum_{a \in A} \prod_{i=1}^n \exp \left( \frac{\theta^2 a_i^2}{2n^2} \right) = \sum_{a \in A} \exp \left( \frac{\theta^2 \|a\|_2^2}{2n^2} \right) \leq |A| \exp \left( \frac{\theta^2 \sigma^2}{2n} \right) \end{aligned}$$

# Proof of Rademacher Averages Lemma

**Lemma (Rademacher averages).** For a **finite** subset  $A \subseteq \mathbb{R}^n$  and  $\sigma^2 := \max_{a \in A} \|a\|_2^2/n$ ,

$$\mathbb{E}_{\epsilon_i \sim \{\pm 1\}} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \leq \sqrt{\frac{2\sigma^2 \log|A|}{n}}$$

*Proof.*

- Consider the MGF:

$$\exp \left( \theta \mathbb{E} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \right) \leq |A| \exp \left( \frac{\theta^2 \sigma^2}{2n} \right)$$

- Thus, we have

$$\mathbb{E} \left[ \sup_{a \in A} \frac{1}{n} \sum_{i=1}^n \epsilon_i a_i \right] \leq \frac{\log|A|}{\theta} + \frac{\theta \sigma^2}{2n} = \sqrt{\frac{2\sigma^2 \log|A|}{n}} \quad \text{with } \theta := \sqrt{2n \log|A|}/\sigma$$



# Glivenko-Cantelli Theorem

Let  $X_1, X_2, \dots$  be iid random variables. Define the empirical distribution  $P_n$  by its CDF:

$$F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbf{1}[X_i \leq x]$$

Then, for the function family  $G = \{\mathbf{1}[x \leq t] : t \in \mathbb{R}\}$ , we have

$$\sup_{g \in G} |\mathbb{E}_{P_n}[g] - \mathbb{E}_P(g)| \xrightarrow{a.s.} 0$$

- Generalizing the GC theorem to **GC class** (the function class that satisfies the uniform convergence)
- GC class is connected to the **Vapnik-Chervonenkis (VC) dimension**

# The Fundamental Theorem of Statistical Learning

Let  $\mathcal{C}$  be a concept class of functions from a domain  $\mathcal{X}$  to  $\{-1,1\}$ , and let the loss function be the 0-1 loss (i.e.,  $\mathbf{1}[f(x) \neq y]$ ). Then the following are equivalent:

1.  $\mathcal{C}$  has the uniform convergence property
2.  $\mathcal{C}$  is (agnostic) PAC learnable
3.  $\mathcal{C}$  is (realizable) PAC learnable
4.  $\mathcal{C}$  has finite VC dimension
5.  $\mathcal{C}$  is learnable by an ERM algorithm

*Covered in CS 578 - Statistical Machine Learning by Anuran Makur*