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Recap

For a random variable Z, define its log-moment generating function ¥ (0) = log ]E[ee(Z_IE[ZD].

Pr(Z — E[Z] = t] < exp (gr;g —0t + 1/)(6))

Let X4, ..., X,, be independent random variablesand Z := X; + ---+ X,

Hoeffding’s inequality: if a; < X; < b; fori € [n], then

2t2
Pr||Z — E[Z]| = t] < 2exp (_ 7 (b, — a-)2>
=1\ l

Chernoff bound: if X;’s are Bernoulli random variables, then
Pr[|Z — E[Z]| = tE[Z]]| < 2 exp(—t?E[Z]/3)

Bernstein’s inequality: if |X; — E|X;]| < b fori € [n], then

t2/2
Pr(|Z — E[Z]| = t] < 2exp (_ Var[Z] + bt/3)
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Today’s Lecture

- Tensorization of Variance (Revisited)
- Azuma-Hoeffding Inequality

- Applications
Pattern Matching
Learning Theory and Glivenko-Cantelli Theorem
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X, ..., X,,). Then

; Var,[Z]

where Var;[Z](xq1, ..., Xj—1, Xj41, -0, X)) = Var[f(xq, «, Xj—1, Xy Xj11, o0 X)) ]

Var[Z] < E
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Detour: Conditional Expectation

Conditional expectation from introductory probability class
Let X be a random variable with E[|X]|] < oo, and Y be another random variable with Pr[Y = y] > 0
Then we can define E[X|Y = y] =), xPr[X = x,Y = y]/Pr|Y = y]
Z = E|X|Y] is a random variable such that Pr[Z = E[X]|Y = y]] = Pr[Y = y]

Issue: consider a 2-d Gaussian (X,Y) ~ NV (0, £) with probability density function g(x, y). What is
E[X|Y = y]? Intuitively, it is natural to define it as

However, forany y € R, Pr[Y = y] = 0!

We need measure-theoretic probability theory, where E[X|Y] is directly defined as a random variable
(instead of for each Y = y) satisfying E[E[X|Y]h(Y)] = E[Xh(Y)] for any test function h
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Detour: Conditional Expectation

Useful properties of conditional expectation

- Tower property:
E[E[X|Y]|Y, Z] = E[X|Y] = E[E[X]|Y, Z]|Y]
E[X] = E|E[X]|Y]]
E[XY|X,Z] = XE[Y|X, Z]

For any invertible function f,
E[X]Y] = E[X|f(Y)]
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Detour: Martingale

A sequence of random variables Z4, Z,, ... is a martingale with respect to sequence X, X5, ... if foralli = 0,

Z; is a function of X4, ..., X;
E[|Z;|]] < o0
IIE‘:[Zi+1|)(1' ""Xi] — Zi

In particular, we say Z, Z,, ... is a martingale if it’s a martingale with respect to itself.

Suppose a gambler places bets on a sequence of fair games: bets can increase/decrease based on history

Let X; be amount he wins at step t (could be negative)
Let Z; = )¢ X; be total winning at end of ¢-th step

Z{,Z,,...is a martingale, since E[Z;,{|X{, ..., X;] = Z; + E[X;11] = Z;
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Detour: Martingale

A sequence of random variables Z4, Z,, ... is a martingale with respect to sequence X;, X, ...ifforalli = 0,
Z; is a function of X4, ..., X;
E[1Z;]] <
E[Ziy1|Xy, - Xi] = Z;

In particular, we say Z4, Z5, ... is a martingale if it’s a martingale with respect to itself.

Lemma. Let Z4, Z,, ... be a martingale with respect to X4, X5, .... Then,
E[Z,] = E[Z,1] = --- = E[Z{]

Proof.
E[Z,] = E[E[Z,|X;, ..., Xpn-1]| = E[Z,_1]
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X, ..., X,,). Then

; Var,[Z]

where Var;[Z](xq1, ..., Xj—1, Xj41, -0, X)) = Var[f(xq, «, Xj—1, Xy Xj11, o0 X)) ]

Var[Z] < E

Proof.

For i € [n], define a new random variable A;:
A; = E[Z|Xq, ., X;] — E[Z|Xq, o, Xi_4]

Notice the telescoping sum:

z A, = Z(IE[ZIXl, X = E[ZIXy, o Xia]) = E[ZIXy, ., X,,] — E[Z] = Z — E[Z]
i=1 =1
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X, ..., X,,). Then

; Var,[Z]

where Var;[Z](xq1, ..., Xj—1, Xj41, -0, X)) = Var[f(xq, «, Xj—1, Xy Xj11, o0 X)) ]

Var[Z] < E

Proof.

For i € [n], define a new random variable A;:
A; = E[Z|Xq, ., X;] — E[Z|Xq, o, Xi_4]

Moreover, for i € [n],

E[A;|Xy, ..., Xi_1] = E[E[Z|Xq, ., X:|Xq1, o, Xio1] — E[E[Z|Xq, oo, Xi )1 X1 oor, Xioq]
- ]E[Zle, ""Xi—l] - ]E[Zle, ""Xi—l] =0

We say A4, ..., A,, are martingale difference
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X, ..., X,,). Then

; Var,[Z]

where Var;[Z](xq1, ..., Xj—1, Xj41, -0, X)) = Var[f(xq, «, Xj—1, Xy Xj11, o0 X)) ]

Var[Z] < E

Proof.

For i € [n], define a new random variable A;:
A; = E[Z|Xq, ., X;] — E[Z|Xq, o, Xi_4]

E[Z], E[Z|X.], E[Z|X{, X], ..., E[Z| X4, ..., X;,] is @ martingale w.r.t. X4, ..., X,, (Doob martingale)
IE[AL|X1, ""Xi—l] — ]E[]E[Z Xl' ...,Xi]le, ""Xi—l] - ]E[Zle, ""Xi—l] =0

J

Forany j < i, E[A;j] = E|E[A]Xy, ..., X ]| = E[E[A;1Xy, .., X,—1]8y] = 0

(tower property)
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X, ..., X,,). Then

; Var,[Z]

where Var; [Z](xq1, ., Xj—1, Xj11, -0 X)) = Var[f (X1, «o, Xj—1, Xi) X4 1 oo0r X)) ]

Var|[Z] < E

Proof.

For i € [n], define a new random variable A;:
A; = E[Z|Xy, ..., X;] — E[Z|Xq, oo, Xi_4]

Z —E[Z] = Sien A

Foranyi # j, IE[AL-A]-] =0

Var[Z] = E[(Z — E[Z])?] = E [(Zie[n]Ai>
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X4, ..., X,,). Then

; Var,[Z]

where Var;[Z](xq, ..., Xj—1, Xj41, -0, Xp) = Var[f(xq, «, Xj—1, Xy Xj11, oo X)) ]

Var[Z] < E

Proof.

For i € [n], define a new random variable A;:
A; = E[Z|Xq, ., X;] — E[Z|Xq, o, Xi_4]

It remains to show that IE[A%] < IE[Varl- [Z]] foranyi € [n]:

E[Z|Xq, ., X;_1] = E[E[Z|Xq, ) X;—1, Xis1) oo X1 X, ons Xi_1]
E[E[lell ---;Xi—l;Xi+1; "'an]|X1; ---;Xi—lixi]

Define A; := Z — E[Z|Xy, ., Xi_1, Xi41, -» Xn]. We have E|A; | Xy, ..., X;| = A

January 29, 2026 12



Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X, ..., X,,). Then

; Var,[Z]

where Var; [Z](xq1, ., Xj—1, Xj11, -0 X)) = Var[f (X1, «o, Xj—1, Xi) X4 1 oo0r X)) ]

Var|[Z] < E

Proof.

For i € [n], define a new random variable A;:
A; = E[Z|Xy, ..., X;] — E[Z|Xq, oo, Xi_4]

Define A; := Z — E[Z|Xy, ., Xi_1, Xi41, -» Xn]. We have E|A; | Xy, ..., X;| = A

Since X; and {Xy, ..., X;_1, X;+1, ..., X} are independent,
—2
Var,[Z] = E [Ak DERD A Y ...,Xn]

= E[#?] = E|E[&]x,, ...,Xl-]2] <E [IE [&Z‘Xl, Xl” =E|4;"| = E[var,[z]]

(Jensen)
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Tensorization of Variance (Revisited)

Theorem. Suppose X, ..., X;, are independent random variables. Let Z = f (X4, ..., X,,). Then

; Var,[Z]

where Var;[Z](xq, ..., Xj—1, Xj41, -0, Xp) = Var[f(xq, «, Xj—1, Xy Xj11, oo X)) ]

Var[Z] < E

The key idea of the proof is to decompose
n
f (X0, X) = ELF Xy, o X)) = ) A
i=1

And using the martingale difference property, Var|[f] = ’{‘zl IE[A%]
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Today’s Lecture

- Tensorization of Variance (Revisited)
- Azuma-Hoeffding Inequality

- Applications
Pattern Matching
Learning Theory and Glivenko-Cantelli Theorem
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Azuma-Hoeffding Inequality

Let Ay, A,, ..., A, be martingale differences and a; < A; < b; forany i € [n]. Then
- 2t2

Pr ZAiZt < 2exp| — vVt > 0
i=1

If we take A; = X; — E[X;] for independent random variables X4, ..., X,

We recover the Hoeffding inequality:

Zn:(xi — E[X;])
i=1

Pr >t

<) 2t2
= 4P 2 (b; — a;)?
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Azuma-Hoeffding Inequality

Let Ay, A,, ..., A, be martingale differences and a; < A; < b; forany i € [n]. Then

n
Pr l Z Ai
=1

2t*
>t < 2exp|— vVt > 0
Let Z == Y"1 A;. Then E[Z] = 0 and

i=1(b; — a;)?
Pr[Z = t] < exp (}925 6t +(0))

Proof.

We just need to bound the log-MGF:
Y(08) = log IE[BBZ] = log IE[eQZ?=1 Ai]

This is the only step that is different from Hoeffding inequality’s proof
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Azuma-Hoeffding Inequality

Let Ay, A,, ..., A, be martingale differences and a; < A; < b; forany i € [n]. Then

n

2t2
Pr ZA-Zt < 2exp| — Vi >0
l P ( ?:1(bi o ai)z)

=1

Proof.

We just need to bound the log-MGF:
Y(08) =log IE[BBZ] = log IE[eQZ?=1 Ai]

Suppose E[A;|X4, ...,X;—1] = 0foranyi € [n], i.e., Aq, ..., A, are martingale differences w.r.t. X4, ..., X},

By the tower property,

E[efZi=14i] = E [e9 =1 ME[efn|X,, ...,Xn_l]]
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Azuma-Hoeffding Inequality

Let Ay, A,, ..., A, be martingale differences and a; < A; < b; forany i € [n]. Then

2t
>t| < 2exp|— vVt > 0

n 2
By the tower property,

n

Pri2, o

=1

Proof.

E[ef Zi=14i] = IE[ 0Ly lIE[eQAn|X1,...,Xn_1]]

Using the same argument as in the Hoeffding inequality’s proof,
E[en|X,, ..., Xp_1| < e(n—an)*/8

E[e? 2= 4] < e(bn=an) /SIE[ 6 Yizs 1A] < o < eZiza(bn—an)?/8
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Azuma-Hoeffding Inequality

Let Ay, A,, ..., A, be martingale differences and a; < A; < b; forany i € [n]. Then

n
2t2
Pr ZA-Zt < 2exp|— Vvt >0
=1 p( Z?:l(bi_ai)z)

Proof.

IE[@H Z?=1 Ai] S e(bn_an)z/SE [89 Z?z_]_l Ai] S S 82?=1(bn_an)2/8

Thus, Y (08) = log [E[eez?ﬂAi] <> . (b, —a,)?*/8
N

This result can be generalized to case when a;, b; are random variables that may depend on X3, ..., X;_1, and
Pria; < A; < b;] =1 (i.e,, a; < A; < b; almost surely or a.s.).
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Azuma-Hoeffding Inequality

Let A{, A, ..., A, be martingale differences and A; < A; < B; a.s. for any i € [n]. Then

n
Pr l Z Ai
=1

where ||B; — A;|l == inf{c = 0 : Pr[|B; — 4;| < c] = 1}

2t2
n B — Aill%

Zt]SZexp(— ) vVt > 0
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Bounded Differences

Recall that

Corollary. For Z = f(Xy, ..., X},), define the i-th discrete partial derivative as:

(Dif)(x1; e Xi—1 Xi4+ 1) ""xn) = sup f(xll ey Xi—1,Z, Xjg1) - rxn)
zesupp(X;)
— zEs&gg(Xi)f(xl' iy Xie 1y Zy Xjs1y eeey Xy)

Then,

1 n
Var[Z] < Zz E[(D;f)?]

We say f satisfies the bounded differences property if there exist ¢4, ¢5, ..., ¢, € R such that
N(D;f)(xq, oo Xi—1, Xig1, s X))l S € Vi € 1]
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McDiarmid Inequality

Let X4, ..., X;, be independent random variables and f (x4, ..., x,;) be such that satisfies the
bounded differences property with ¢4, ..., ¢;,. Then

2 2
Pr{|f(Xy, ..., X)) — E[f(Xq, ..., X,)]| = t] < 2exp (— nt 2)

i=1Ci
Proof.

We still use the decomposition: f — E[f] = X.}-; A;, where Ay, ..., A, are martingale differences:
Al = ]E[f(Xl, ...,Xn)lxl, ’Xl] - ]E[f(Xl, ...,Xn)|X1, ""Xi—l]

We need to find random variables A;, B; such that 4; < A; < B;

Al = [E lnff(Xl, l 1, %, Xl+1' Xn) |X1, Xi_l] — ]E f(X]J Xn)|X1, ...,Xl'_l]
Bl = E Supf(Xl, l 1,4, Xl+1' Tl) |X1, — ] [f(Xl' ...,Xn)|X1, ""Xi—l]
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McDiarmid Inequality

Let X4, ..., X;, be independent random variables and f (x4, ..., x,;) be such that satisfies the
bounded differences property with ¢4, ..., ¢;,. Then

2 2
Pr{|f(Xy, ..., X)) — E[f(Xq, ..., X,)]| = t] < 2exp (— nt 2)

i=1Ci
Proof.
A; — Ay = E[f(Xq, oo, X)) | X1, o) X;] — E [mff(Xl,... 02 Xint o, X)) ‘Xl,...,Xl-_ll
=E[f(X;, ... Xp) - inf (X1, 0, Xi-1,2, Xir1, 00 Xn) [, ..., X
>0

Then, we have
|Bi - All — IE“(le)(Xl' ""Xi—l'Xi+1' 'Xn)”Xli ---;Xi—l] < Ci

Then we complete the proof by Azuma-Hoeffding inequality
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Today’s Lecture

- Tensorization of Variance (Revisited)
- Azuma-Hoeffding Inequality

- Applications
Pattern Matching
Learning Theory and Glivenko-Cantelli Theorem
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Application 1: Pattern Matching

Let X, ..., X,; € X be a sequence of tokens generated uniformly at random (a trivial language model)
Let A = (aq, ..., a,) € =¥ be a fixed length-k token sequence

Let Z be the number of occurrences of A

E[Zl=(n—-k+1)-|2|7F

Consider the martingale differences:
A; = E[Z|Xq, ..., X;] — E|Z]|Xq, ..., X;_{]

Azuma implies that
Pr[|Z — E[Z]| = t] < 2e~t"/(2nk?)

January 29, 2026 26



Learning Theory Basics

For a function f € F, the empirical risk (with iid data samples {(x;, ¥;) }ieny) is
1 n
R(D =) €(F G, v1)
i=1
The empirical risk minimizing (ERM) function is f,, := arg min R(f)

fEF

The true performance (the expected risk) of f is

R(f) = Eyyen[£(f (x), y)]

and we define f* := arg min R(f)

We want to control the excess risk:
R(fn) _ R(f*) = lR(fn) _ R\(fn)‘ +‘R\(fn) _ ﬁ(f*)'+l§(f*) _ R(f*)‘

Uniform laws of large < 0 by ERM LLN for f*
numbers for F
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Learning Theory Basics

For a function f € F, the empirical risk (with iid data samples {(x;, ¥;) }ieny) is
n
. 1
R(D =) €(F G, v1)
i=1

The empirical risk minimizing (ERM) function is f,, := arg I}lei}lﬁ(f)

The true performance (the expected risk) of f is

R(f) = Eyyen[£(f (x), y)]

and we define f* := arg min R(f)

n
. 1
RUFD = RU) = ) ~(f*(x),y) = ELE(* (), )]
i=1
For a bounded loss function €, Hoeffding’s inequality implies that this error converges to 0 w.h.p.
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Learning Theory Basics

For a function f € F, the empirical risk (with iid data samples {(x;, ¥;) }ieny) is
n
~ 1
R(D =+ ) €(F G, v
i=1
The empirical risk minimizing (ERM) function is f,, :== arg min R(f)

fEF

The true performance (the expected risk) of f is

R(f) = E(xy)eD [£(f (x), y)]

and we define f* := arg min R(f)

The first term R(f,,) — R(f,,) is more interesting. f,, is a random function depending on {(xi, yi)Yiem

We can upper bound it by R(f,,) — R(f,) < sup|R(f) - ﬁ(f)l
fEF

The uniform laws of large numbers provide an upper bound for the excess risk for all functions
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Glivenko-Cantelli Theorem

Let X, X,, ... be iid random variables with the cumulative distribution function (CDF) F (x)

Define the empirical distribution function for X4, ..., X,, as
1 n
Fn(.X') = Ez l[Xl < X]
i=1

Then, [|F, = Flleo = sup |F, (x) = F(x)] —0
X
Let P be the distribution of each X;, and P, be the empirical distribution (with CDF E,,)
GC theorem implies that sgp |F,(x) — F(x)| = sgp ‘ngn[X <x]— Pr[X < x]‘ —0
Define a function class G := {1[x < t] : t € R}

Then, GC theorem < sup|IEpn[g] — Ep [g]| =: ||P, — P||G£>O
geG
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Glivenko-Cantelli Theorem

Let X, X,, ... be iid random variables with the cumulative distribution function (CDF) F (x)

Define the empirical distribution function for X4, ..., X,, as
1 n
Fn(X) = Ez l[Xl < X]
i=1

Then, [|E, — Flleo = sup |E,(x) — F(x)| ——0
X

Proof (Key ideas).
1. Concentration: ||B, — Pll¢ = E|[||B, — P||¢] w.h.p.
2. Symmetrization: E[||B, — Pllg] < 2E[lIRyll¢] where E_[g] == (1/n) ¥iL, €;9(X;) (Rademacher process)

3.  Restriction: G restricted to a finite-sized set to bound the Rademacher averages
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Glivenko-Cantelli Theorem: Concentration

1P = Pllg = sup|Ep, [g00] — EplgCO]| = sup Z 10X, < 6] - Ep[g ()]

gea gEG

|12, — P||¢ is a function of X4, ..., X,

It has the bounded differences property:

1
Sup”P — P”G(Xll l 1,4, Xl+1' Tl) — lnf”P — P”G(Xll l 1,4, Xl+1' Xn) < E

McDiarmid inequality: with probability at least 1 — exp(—2€24n),
1B, — Pllg < E[llB, — Pllg] + €
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Glivenko-Cantelli Theorem: Symmetrization

Note that for iid samples X7, ..., X;,, E EZ?ﬂ g(Xl-')] = Ep|g]

Thus, we can introduce another n iid samples X5, ..., X}, and get that

1 n
Ey; gi(g(xi)—goq))

E[|[P, — Pllg] = Ey, [sup
€G

Z(g(X) e >)‘

< Ex,Ey [sup
= E[l|5 — Pull¢]

The second step follows from Jensen inequality and the fact that sup|-| is convex

January 29, 2026 33



Glivenko-Cantelli Theorem: Symmetrization

Since {X;, X;} areiid, for any ¢; € {—1,1},

lztelg E(g(X) gxH)|| =

The equality still holds if we take the expectation over €; ~;;4 {—1,1} uniformly at random

E[llP, = Pllc] =
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Glivenko-Cantelli Theorem: Restriction

%zn: €:9(X;)

=1

E[lIR,ll¢] = E [Sup
gEeG

G = {1[x < t] : t € R} has co-many elements

For any fixed X4, ..., X;, € R, the restriction G(X, ..., X)) = {{g(Xl), ., 9X,)} g€ G} hasonlyn + 1
elements!

X, X X3 Xy X5 Xe X7
g(x): 1 1 1 1 0 0 0
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Glivenko-Cantelli Theorem: Restriction

i €:9(X;)

E[llRnl¢] [SUP

gEeG
G = {1[x < t] : t € R} has co-many elements

For any fixed X3, ..., X, € R, the restriction G(Xy, ..., X;,) = {{g(X1), .,g(X,)} : g € G} hasonlyn + 1
elements!

Lemma (Rademacher averages). For a finite subset A € R™ and g2 := ma}”allﬁ/n,
ac

B 1 z": _ [20%1oglA]
i~{+1} i‘égn €idi| = n

i=1
n
€;A4;
| @
1

n
1 1 202 1og(2|A])
E |sup— =[E| sup —zeiai <
= acAu(-A) N n

aceA
i=1
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Glivenko-Cantelli Theorem: Restriction

i €:9(X;)

E[llRnl¢] [SUP

gEeG
G = {1|x < t] : t € R} has co-many elements

For any fixed X4, ..., X,, € R, the restriction G(X4, ..., X)) = {{g(Xl), ., gX)}: g€ G} hasonlyn + 1
elements!

Lemma (Rademacher averages). For a finite subset A € R™ and g2 = meazllallg/n,
a

n

i=1

2021 21A
Sja 0g(2]A])

n

i 1
Su
aeg n

Inourcase, |[A| <n+1lando? <n/n=1:

E[llRxll] < jz log(2(n + 1))

n
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Glivenko-Cantelli Theorem: Putting Together

Concentration:
Pr[l|P, — Pllg < E[llP, — Pllg] + €] = 1 — exp(—2€°n)

Symmetrization:
E[lIP, — Pll¢] < 2E[lIR,ll¢]

Restriction:

n

T \/210g(2(n +1))

Therefore,

8 1og(27gn +1)) e

> 1 — g—2€"n

Pr ”Pn_P”GS\/
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Proof of Rademacher Averages Lemma

Lemma (Rademacher averages). For a finite subset A € R™ and g2 := ma}”allﬁ/n,
ac

202 log|A
.Sjaogll
n

Proof.
Consider the MGF:

n
1
exp <9IE [sup —z €;0;
acA

=1

)<

n
1
exp (9 sup —z eial-)‘ =E [sup exp (8
acA = a€A
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Proof of Rademacher Averages Lemma

Lemma (Rademacher averages). For a finite subset A € R™ and g2 := ma}”allﬁ/n,
ac

202 log|A
.Sjaogll
n

Proof.

Consider the MGF:

Thus, we have

with 0 := \/anogIAI/a

108|A|_|_ 2_\/20210g|A|
n
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Glivenko-Cantelli Theorem

Let X4, X5, ... be iid random variables. Define the empirical distribution P, by its CDF:

E (x) = %Z 1[X; < x]
i=1

Then, for the function family G = {1[x < t] : t € R}, we have

a.s.
sup|Ep, [g] — Ep(g)| ——0
gea

Generalizing the GC theorem to GC class (the function class that satisfies the uniform
convergence)

GC class is connected to the Vapnik-Chervonenkis (VC) dimension
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The Fundamental Theorem of Statistical Learning

Let C be a concept class of functions from a domain X to {—1,1}, and let the loss function
be the 0-1 loss (i.e., 1[f (x) # y]). Then the following are equivalent:

1. C has the uniform convergence property
2. Cis (agnostic) PAC learnable

3. Cis (realizable) PAC learnable

4. C has finite VC dimension

5. Cislearnable by an ERM algorithm

Covered in CS 578 - Statistical Machine Learning by Anuran Makur
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