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For a random variable 𝑍𝑍, define its log-moment generating function 𝜓𝜓 𝜃𝜃 ≔ log𝔼𝔼 𝑒𝑒𝜃𝜃 𝑍𝑍−𝔼𝔼 𝑍𝑍 . 

Pr 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 ≥ 𝑡𝑡 ≤ exp inf
𝜃𝜃≥0

−𝜃𝜃𝜃𝜃 + 𝜓𝜓 𝜃𝜃

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables and 𝑍𝑍 ≔ 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛
• Hoeffding’s inequality:  if 𝑎𝑎𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for 𝑖𝑖 ∈ 𝑛𝑛 , then

Pr 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2

• Chernoff bound:  if 𝑋𝑋𝑖𝑖’s are Bernoulli random variables, then
Pr 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 ≥ 𝑡𝑡𝔼𝔼 𝑍𝑍 ≤ 2 exp − ⁄𝑡𝑡2𝔼𝔼 𝑍𝑍 3

• Bernstein’s inequality:  if 𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑋𝑋𝑖𝑖 ≤ 𝑏𝑏 for 𝑖𝑖 ∈ 𝑛𝑛 , then

Pr 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 ≥ 𝑡𝑡 ≤ 2 exp −
⁄𝑡𝑡2 2

Var 𝑍𝑍 + ⁄𝑏𝑏𝑏𝑏 3
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• Tensorization of Variance (Revisited)

• Azuma-Hoeffding Inequality

• Applications
• Pattern Matching
• Learning Theory and Glivenko-Cantelli Theorem
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]
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Conditional expectation from introductory probability class

• Let 𝑋𝑋 be a random variable with 𝔼𝔼 𝑋𝑋 < ∞, and 𝑌𝑌 be another random variable with Pr 𝑌𝑌 = 𝑦𝑦 > 0

• Then we can define 𝔼𝔼 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 = ⁄∑𝑥𝑥 𝑥𝑥 Pr 𝑋𝑋 = 𝑥𝑥,𝑌𝑌 = 𝑦𝑦 Pr 𝑌𝑌 = 𝑦𝑦

• 𝑍𝑍 = 𝔼𝔼 𝑋𝑋 𝑌𝑌  is a random variable such that Pr 𝑍𝑍 = 𝔼𝔼 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 = Pr 𝑌𝑌 = 𝑦𝑦

Issue: consider a 2-d Gaussian 𝑋𝑋,𝑌𝑌 ∼ 𝒩𝒩 0, Σ  with probability density function 𝑔𝑔 𝑥𝑥,𝑦𝑦 . What is 
𝔼𝔼 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 ? Intuitively, it is natural to define it as

𝔼𝔼 𝑋𝑋 𝑌𝑌 = 𝑦𝑦 =
∫ 𝑥𝑥𝑥𝑥 𝑥𝑥,𝑦𝑦 d𝑥𝑥
∫ 𝑔𝑔 𝑥𝑥,𝑦𝑦 d𝑥𝑥

However, for any 𝑦𝑦 ∈ ℝ, Pr 𝑌𝑌 = 𝑦𝑦 = 0!

• We need measure-theoretic probability theory, where 𝔼𝔼 𝑋𝑋 𝑌𝑌  is directly defined as a random variable 
(instead of for each 𝑌𝑌 = 𝑦𝑦) satisfying 𝔼𝔼 𝔼𝔼 𝑋𝑋 𝑌𝑌 ℎ 𝑌𝑌 = 𝔼𝔼 𝑋𝑋𝑋 𝑌𝑌  for any test function ℎ
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Useful properties of conditional expectation

• Tower property:
𝔼𝔼 𝔼𝔼 𝑋𝑋 𝑌𝑌 𝑌𝑌,𝑍𝑍 = 𝔼𝔼 𝑋𝑋 𝑌𝑌 = 𝔼𝔼 𝔼𝔼 𝑋𝑋 𝑌𝑌,𝑍𝑍 𝑌𝑌

•

𝔼𝔼 𝑋𝑋 = 𝔼𝔼 𝔼𝔼 𝑋𝑋 𝑌𝑌

•
𝔼𝔼 𝑋𝑋𝑋𝑋 𝑋𝑋,𝑍𝑍 = 𝑋𝑋𝑋𝑋 𝑌𝑌 𝑋𝑋,𝑍𝑍

• For any invertible function 𝑓𝑓,
𝔼𝔼 𝑋𝑋 𝑌𝑌 = 𝔼𝔼 𝑋𝑋 𝑓𝑓 𝑌𝑌



Detour: Martingale

January 29, 2026 6

A sequence of random variables 𝑍𝑍1,𝑍𝑍2, … is a martingale with respect to sequence 𝑋𝑋1,𝑋𝑋2, … if for all 𝑖𝑖 ≥ 0,

• 𝑍𝑍𝑖𝑖  is a function of 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖
• 𝔼𝔼 𝑍𝑍𝑖𝑖 < ∞

• 𝔼𝔼 𝑍𝑍𝑖𝑖+1 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 = 𝑍𝑍𝑖𝑖
In particular, we say 𝑍𝑍1,𝑍𝑍2, … is a martingale if it’s a martingale with respect to itself.

Example: Gambling

• Suppose a gambler places bets on a sequence of fair games: bets can increase/decrease based on history

• Let 𝑋𝑋𝑡𝑡 be amount he wins at step 𝑡𝑡 (could be negative)

• Let 𝑍𝑍𝑡𝑡 ≔ ∑𝑖𝑖∈ 𝑡𝑡 𝑋𝑋𝑖𝑖 be total winning at end of 𝑡𝑡-th step

• 𝑍𝑍1,𝑍𝑍2, … is a martingale, since 𝔼𝔼 𝑍𝑍𝑖𝑖+1 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 = 𝑍𝑍𝑖𝑖 + 𝔼𝔼 𝑋𝑋𝑖𝑖+1 = 𝑍𝑍𝑖𝑖
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A sequence of random variables 𝑍𝑍1,𝑍𝑍2, … is a martingale with respect to sequence 𝑋𝑋1,𝑋𝑋2, … if for all 𝑖𝑖 ≥ 0,

• 𝑍𝑍𝑖𝑖  is a function of 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖
• 𝔼𝔼 𝑍𝑍𝑖𝑖 < ∞

• 𝔼𝔼 𝑍𝑍𝑖𝑖+1 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 = 𝑍𝑍𝑖𝑖
In particular, we say 𝑍𝑍1,𝑍𝑍2, … is a martingale if it’s a martingale with respect to itself.

Lemma.  Let 𝑍𝑍1,𝑍𝑍2, … be a martingale with respect to 𝑋𝑋1,𝑋𝑋2, …. Then,
𝔼𝔼 𝑍𝑍𝑛𝑛 = 𝔼𝔼 𝑍𝑍𝑛𝑛−1 = ⋯ = 𝔼𝔼 𝑍𝑍1

Proof.

𝔼𝔼 𝑍𝑍𝑛𝑛 = 𝔼𝔼 𝔼𝔼 𝑍𝑍𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛−1 = 𝔼𝔼 𝑍𝑍𝑛𝑛−1

∎
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]

Proof.

• For 𝑖𝑖 ∈ 𝑛𝑛 , define a new random variable Δ𝑖𝑖:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• Notice the telescoping sum:

�
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 − 𝔼𝔼 𝑍𝑍 = 𝑍𝑍 − 𝔼𝔼 𝑍𝑍
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]

Proof.

• For 𝑖𝑖 ∈ 𝑛𝑛 , define a new random variable Δ𝑖𝑖:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• Moreover, for 𝑖𝑖 ∈ 𝑛𝑛 ,

𝔼𝔼 Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 𝔼𝔼 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 − 𝔼𝔼 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1
= 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 0

• We say Δ1, … ,Δ𝑛𝑛 are martingale difference
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]

Proof.

• For 𝑖𝑖 ∈ 𝑛𝑛 , define a new random variable Δ𝑖𝑖:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• 𝔼𝔼 𝑍𝑍 ,𝔼𝔼 𝑍𝑍 𝑋𝑋1 ,𝔼𝔼 𝑍𝑍 𝑋𝑋1,𝑋𝑋2 , … ,𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  is a martingale w.r.t. 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 (Doob martingale)

• 𝔼𝔼 Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 𝔼𝔼 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 0

• For any 𝑗𝑗 < 𝑖𝑖, 𝔼𝔼 Δ𝑖𝑖Δ𝑗𝑗 = 𝔼𝔼 𝔼𝔼 Δ𝑖𝑖Δ𝑗𝑗 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 𝔼𝔼 𝔼𝔼 Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 Δ𝑗𝑗 = 0

(tower property)



Tensorization of Variance (Revisited)

January 29, 2026 11

Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]
Proof.

• For 𝑖𝑖 ∈ 𝑛𝑛 , define a new random variable Δ𝑖𝑖:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 = ∑𝑖𝑖∈ 𝑛𝑛 Δ𝑖𝑖

• For any 𝑖𝑖 ≠ 𝑗𝑗, 𝔼𝔼 Δ𝑖𝑖Δ𝑗𝑗 = 0

Var 𝑍𝑍 = 𝔼𝔼 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 2 = 𝔼𝔼 �
𝑖𝑖∈[𝑛𝑛]

Δ𝑖𝑖
2

= �
𝑖𝑖∈[𝑛𝑛]

𝔼𝔼 Δ𝑖𝑖2
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]

Proof.

• For 𝑖𝑖 ∈ 𝑛𝑛 , define a new random variable Δ𝑖𝑖:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• It remains to show that 𝔼𝔼 Δ𝑖𝑖2 ≤ 𝔼𝔼 Var𝑖𝑖 𝑍𝑍  for any 𝑖𝑖 ∈ 𝑛𝑛 :

𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 𝔼𝔼 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1
= 𝔼𝔼 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖

• Define �Δ𝑖𝑖 ≔ 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 . We have 𝔼𝔼 �Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 = Δ𝑖𝑖
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]
Proof.

• For 𝑖𝑖 ∈ 𝑛𝑛 , define a new random variable Δ𝑖𝑖:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• Define �Δ𝑖𝑖 ≔ 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 . We have 𝔼𝔼 �Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 = Δ𝑖𝑖
• Since 𝑋𝑋𝑖𝑖 and 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛  are independent,

Var𝑖𝑖 𝑍𝑍 = 𝔼𝔼 �Δ𝑘𝑘
2 𝑋𝑋1, … ,𝑋𝑋𝑘𝑘−1,𝑋𝑋𝑘𝑘+1, … ,𝑋𝑋𝑛𝑛

⟹  𝔼𝔼 Δ𝑖𝑖2 = 𝔼𝔼 𝔼𝔼 �Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖
2 ≤ 𝔼𝔼 𝔼𝔼 �Δ𝑖𝑖

2 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 = 𝔼𝔼 �Δ𝑖𝑖
2 = 𝔼𝔼 Var𝑖𝑖 𝑍𝑍

∎(Jensen)
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Theorem.  Suppose 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent random variables. Let 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 . Then

Var 𝑍𝑍 ≤ 𝔼𝔼 �
𝑖𝑖=1

𝑛𝑛

Var𝑖𝑖 𝑍𝑍

where Var𝑖𝑖 𝑍𝑍 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ Var[𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛)]

The key idea of the proof is to decompose

𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 − 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖

And using the martingale difference property, Var 𝑓𝑓 = ∑𝑖𝑖=1𝑛𝑛 𝔼𝔼 Δ𝑖𝑖2
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• Tensorization of Variance (Revisited)

• Azuma-Hoeffding Inequality

• Applications
• Pattern Matching
• Learning Theory and Glivenko-Cantelli Theorem
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Let Δ1,Δ2, … ,Δ𝑛𝑛 be martingale differences and 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for any 𝑖𝑖 ∈ 𝑛𝑛 . Then

Pr �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2  ∀𝑡𝑡 > 0

• If we take Δ𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑋𝑋𝑖𝑖  for independent random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 (Think: why are they martingale 
differences?)

• We recover the Hoeffding inequality:

Pr �
𝑖𝑖=1

𝑛𝑛

𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑋𝑋𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2
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Let Δ1,Δ2, … ,Δ𝑛𝑛 be martingale differences and 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for any 𝑖𝑖 ∈ 𝑛𝑛 . Then

Pr �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2  ∀𝑡𝑡 > 0

Proof.

• Let 𝑍𝑍 ≔ ∑𝑖𝑖=1𝑛𝑛 Δ𝑖𝑖. Then 𝔼𝔼 𝑍𝑍 = 0 and

Pr 𝑍𝑍 ≥ 𝑡𝑡 ≤ exp inf
𝜃𝜃≥0

−𝜃𝜃𝜃𝜃 + 𝜓𝜓 𝜃𝜃

• We just need to bound the log-MGF:
𝜓𝜓 𝜃𝜃 ≔ log𝔼𝔼 𝑒𝑒𝜃𝜃𝑍𝑍 = log𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1

𝑛𝑛 Δ𝑖𝑖

• This is the only step that is different from Hoeffding inequality’s proof
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Let Δ1,Δ2, … ,Δ𝑛𝑛 be martingale differences and 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for any 𝑖𝑖 ∈ 𝑛𝑛 . Then

Pr �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2  ∀𝑡𝑡 > 0

Proof.

• We just need to bound the log-MGF:
𝜓𝜓 𝜃𝜃 ≔ log𝔼𝔼 𝑒𝑒𝜃𝜃𝜃𝜃 = log𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1

𝑛𝑛 Δ𝑖𝑖

• Suppose 𝔼𝔼 Δ𝑖𝑖 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = 0 for any 𝑖𝑖 ∈ 𝑛𝑛 , i.e., Δ1, … ,Δ𝑛𝑛 are martingale differences w.r.t. 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛
• By the tower property,

𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1
𝑛𝑛 Δ𝑖𝑖 = 𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1

𝑛𝑛−1 Δ𝑖𝑖𝔼𝔼 𝑒𝑒𝜃𝜃Δ𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛−1
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Let Δ1,Δ2, … ,Δ𝑛𝑛 be martingale differences and 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for any 𝑖𝑖 ∈ 𝑛𝑛 . Then

Pr �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2  ∀𝑡𝑡 > 0

Proof.

• By the tower property,

𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1
𝑛𝑛 Δ𝑖𝑖 = 𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1

𝑛𝑛−1 Δ𝑖𝑖𝔼𝔼 𝑒𝑒𝜃𝜃Δ𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛−1

• Using the same argument as in the Hoeffding inequality’s proof,
𝔼𝔼 𝑒𝑒𝜃𝜃Δ𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛−1 ≤ 𝑒𝑒 ⁄𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛 2 8

𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1
𝑛𝑛 Δ𝑖𝑖 ≤ 𝑒𝑒 ⁄𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛 2 8𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1

𝑛𝑛−1 Δ𝑖𝑖 ≤ ⋯ ≤ 𝑒𝑒 ⁄∑𝑖𝑖=1
𝑛𝑛 𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛 2 8
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Let Δ1,Δ2, … ,Δ𝑛𝑛 be martingale differences and 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 for any 𝑖𝑖 ∈ 𝑛𝑛 . Then

Pr �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖 2  ∀𝑡𝑡 > 0

Proof.

𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1
𝑛𝑛 Δ𝑖𝑖 ≤ 𝑒𝑒 ⁄𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛 2 8𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1

𝑛𝑛−1 Δ𝑖𝑖 ≤ ⋯ ≤ 𝑒𝑒 ⁄∑𝑖𝑖=1
𝑛𝑛 𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛 2 8

• Thus, 𝜓𝜓 𝜃𝜃 = log𝔼𝔼 𝑒𝑒𝜃𝜃 ∑𝑖𝑖=1
𝑛𝑛 Δ𝑖𝑖 ≤ ⁄∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛 2 8

This result can be generalized to case when 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 are random variables that may depend on 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, and 
Pr 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 = 1 (i.e., 𝑎𝑎𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 almost surely or a.s.). 

∎
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Let Δ1,Δ2, … ,Δ𝑛𝑛 be martingale differences and 𝐴𝐴𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖 a.s. for any 𝑖𝑖 ∈ 𝑛𝑛 . Then

Pr �
𝑖𝑖=1

𝑛𝑛

Δ𝑖𝑖 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝐵𝐵𝑖𝑖 − 𝐴𝐴𝑖𝑖 ∞
2  ∀𝑡𝑡 > 0

where 𝐵𝐵𝑖𝑖 − 𝐴𝐴𝑖𝑖 ∞ ≔ inf 𝑐𝑐 ≥ 0 ∶ Pr 𝐵𝐵𝑖𝑖 − 𝐴𝐴𝑖𝑖 ≤ 𝑐𝑐 = 1
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Recall that

Corollary.  For 𝑍𝑍 = 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 , define the 𝑖𝑖-th discrete partial derivative as:

𝐷𝐷𝑖𝑖𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ≔ sup
𝑧𝑧∈supp 𝑋𝑋𝑖𝑖

𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑧𝑧, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛

− inf
𝑧𝑧∈supp 𝑋𝑋𝑖𝑖

𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑧𝑧, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛

Then, 

Var 𝑍𝑍 ≤
1
4�
𝑖𝑖=1

𝑛𝑛

𝔼𝔼 𝐷𝐷𝑖𝑖𝑓𝑓 2

We say 𝑓𝑓 satisfies the bounded differences property if there exist 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 ∈ ℝ such that
𝐷𝐷𝑖𝑖𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ∞ ≤ 𝑐𝑐𝑖𝑖  ∀𝑖𝑖 ∈ 𝑛𝑛
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Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables and 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  be such that satisfies the 
bounded differences property with 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛. Then

Pr 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 − 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖2

Proof.

• We still use the decomposition: 𝑓𝑓 − 𝔼𝔼 𝑓𝑓 = ∑𝑖𝑖=1𝑛𝑛 Δ𝑖𝑖, where Δ1, … ,Δ𝑛𝑛 are martingale differences:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• We need to find random variables 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 such that 𝐴𝐴𝑖𝑖 ≤ Δ𝑖𝑖 ≤ 𝐵𝐵𝑖𝑖

𝐴𝐴𝑖𝑖 ≔ 𝔼𝔼 inf
𝑧𝑧
𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, 𝑧𝑧,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 − 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

𝐵𝐵𝑖𝑖 ≔ 𝔼𝔼 sup
𝑧𝑧
𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, 𝑧𝑧,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 − 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1
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Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 be independent random variables and 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛  be such that satisfies the 
bounded differences property with 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛. Then

Pr 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 − 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ≥ 𝑡𝑡 ≤ 2 exp −
2𝑡𝑡2

∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖2

Proof.

Δ𝑖𝑖 − 𝐴𝐴𝑖𝑖 = 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 inf
𝑧𝑧
𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, 𝑧𝑧,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

= 𝔼𝔼 𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 − inf
𝑧𝑧
𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, 𝑧𝑧,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖

≥ 0

• Then, we have

𝐵𝐵𝑖𝑖 − 𝐴𝐴𝑖𝑖 = 𝔼𝔼 𝐷𝐷𝑖𝑖𝑓𝑓 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 ≤ 𝑐𝑐𝑖𝑖

• Then we complete the proof by Azuma-Hoeffding inequality
∎
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• Azuma-Hoeffding Inequality

• Applications
• Pattern Matching
• Learning Theory and Glivenko-Cantelli Theorem
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• Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∈ Σ be a sequence of tokens generated uniformly at random (a trivial language model)

• Let 𝐴𝐴 = 𝑎𝑎1, … ,𝑎𝑎𝑘𝑘 ∈ Σ𝑘𝑘  be a fixed length-𝑘𝑘 token sequence

• Let 𝑍𝑍 be the number of occurrences of 𝐴𝐴

 What is the expectation of 𝑍𝑍?
𝔼𝔼 𝑍𝑍 = 𝑛𝑛 − 𝑘𝑘 + 1 ⋅ Σ −𝑘𝑘

 What is Pr 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 ?

• Consider the martingale differences:
Δ𝑖𝑖 ≔ 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 − 𝔼𝔼 𝑍𝑍 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1

• Check by yourself that Δ𝑖𝑖 ≤ 𝑘𝑘

• Azuma implies that
Pr 𝑍𝑍 − 𝔼𝔼 𝑍𝑍 ≥ 𝑡𝑡 ≤ 2𝑒𝑒−𝑡𝑡2∕ 2𝑛𝑛𝑘𝑘2
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• For a function 𝑓𝑓 ∈ ℱ, the empirical risk (with iid data samples 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖∈ 𝑛𝑛 ) is

�𝑅𝑅 𝑓𝑓 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

ℓ 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

• The empirical risk minimizing (ERM) function is 𝑓𝑓𝑛𝑛 ≔ arg min
𝑓𝑓∈ℱ

�𝑅𝑅 𝑓𝑓

• The true performance (the expected risk) of 𝑓𝑓 is
𝑅𝑅 𝑓𝑓 = 𝔼𝔼 𝑥𝑥,𝑦𝑦 ∈𝒟𝒟 ℓ 𝑓𝑓 𝑥𝑥 ,𝑦𝑦

and we define 𝑓𝑓⋆ ≔ arg min
𝑓𝑓∈ℱ

𝑅𝑅 𝑓𝑓

• We want to control the excess risk:

𝑅𝑅 𝑓𝑓𝑛𝑛 − 𝑅𝑅 𝑓𝑓⋆ = 𝑅𝑅 𝑓𝑓𝑛𝑛 − �𝑅𝑅 𝑓𝑓𝑛𝑛 + �𝑅𝑅 𝑓𝑓𝑛𝑛 − �𝑅𝑅 𝑓𝑓⋆ + �𝑅𝑅 𝑓𝑓⋆ − 𝑅𝑅 𝑓𝑓⋆

≤ 0 by ERM LLN for 𝑓𝑓⋆Uniform laws of large 
numbers for ℱ
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• For a function 𝑓𝑓 ∈ ℱ, the empirical risk (with iid data samples 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖∈ 𝑛𝑛 ) is

�𝑅𝑅 𝑓𝑓 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

ℓ 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

• The empirical risk minimizing (ERM) function is 𝑓𝑓𝑛𝑛 ≔ arg min
𝑓𝑓∈ℱ

�𝑅𝑅 𝑓𝑓

• The true performance (the expected risk) of 𝑓𝑓 is
𝑅𝑅 𝑓𝑓 = 𝔼𝔼 𝑥𝑥,𝑦𝑦 ∈𝒟𝒟 ℓ 𝑓𝑓 𝑥𝑥 ,𝑦𝑦

and we define 𝑓𝑓⋆ ≔ arg min
𝑓𝑓∈ℱ

𝑅𝑅 𝑓𝑓

�𝑅𝑅 𝑓𝑓⋆ − 𝑅𝑅 𝑓𝑓⋆ = �
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛
ℓ 𝑓𝑓⋆ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 − 𝔼𝔼 ℓ 𝑓𝑓⋆ 𝑥𝑥 ,𝑦𝑦

• For a bounded loss function ℓ, Hoeffding’s inequality implies that this error converges to 0 w.h.p.



Learning Theory Basics

January 29, 2026 29

• For a function 𝑓𝑓 ∈ ℱ, the empirical risk (with iid data samples 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖∈ 𝑛𝑛 ) is

�𝑅𝑅 𝑓𝑓 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

ℓ 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

• The empirical risk minimizing (ERM) function is 𝑓𝑓𝑛𝑛 ≔ arg min
𝑓𝑓∈ℱ

�𝑅𝑅 𝑓𝑓

• The true performance (the expected risk) of 𝑓𝑓 is
𝑅𝑅 𝑓𝑓 = 𝔼𝔼 𝑥𝑥,𝑦𝑦 ∈𝒟𝒟 ℓ 𝑓𝑓 𝑥𝑥 ,𝑦𝑦

and we define 𝑓𝑓⋆ ≔ arg min
𝑓𝑓∈ℱ

𝑅𝑅 𝑓𝑓

• The first term 𝑅𝑅 𝑓𝑓𝑛𝑛 − �𝑅𝑅 𝑓𝑓𝑛𝑛  is more interesting. 𝑓𝑓𝑛𝑛 is a random function depending on 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖∈ 𝑛𝑛

• We can upper bound it by 𝑅𝑅 𝑓𝑓𝑛𝑛 − �𝑅𝑅 𝑓𝑓𝑛𝑛 ≤ sup
𝑓𝑓∈𝐹𝐹

𝑅𝑅 𝑓𝑓 − �𝑅𝑅 𝑓𝑓

• The uniform laws of large numbers provide an upper bound for the excess risk for all functions
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Let 𝑋𝑋1,𝑋𝑋2, … be iid random variables with the cumulative distribution function (CDF) 𝐹𝐹 𝑥𝑥

Define the empirical distribution function for 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 as

𝐹𝐹𝑛𝑛 𝑥𝑥 ≔
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝟏𝟏 𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥

Then, 𝐹𝐹𝑛𝑛 − 𝐹𝐹 ∞ = sup
𝑥𝑥

|𝐹𝐹𝑛𝑛 𝑥𝑥 − 𝐹𝐹 𝑥𝑥 |
 𝑎𝑎.𝑠𝑠. 

0

• Let 𝑃𝑃 be the distribution of each 𝑋𝑋𝑖𝑖, and 𝑃𝑃𝑛𝑛 be the empirical distribution (with CDF 𝐹𝐹𝑛𝑛)

• GC theorem implies that sup
𝑥𝑥

|𝐹𝐹𝑛𝑛 𝑥𝑥 − 𝐹𝐹 𝑥𝑥 | = sup
𝑥𝑥

Pr
𝑋𝑋∼𝑃𝑃𝑛𝑛

𝑋𝑋 ≤ 𝑥𝑥 − Pr
𝑋𝑋∼𝑃𝑃

𝑋𝑋 ≤ 𝑥𝑥
 𝑎𝑎.𝑠𝑠. 

0

• Define a function class 𝐺𝐺 ≔ 𝟏𝟏 𝑥𝑥 ≤ 𝑡𝑡 ∶ 𝑡𝑡 ∈ ℝ

• Then, GC theorem ⟺ sup
𝑔𝑔∈𝐺𝐺

𝔼𝔼𝑃𝑃𝑛𝑛 𝑔𝑔 − 𝔼𝔼𝑃𝑃 𝑔𝑔 =∶ 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺
 𝑎𝑎.𝑠𝑠. 

0
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Let 𝑋𝑋1,𝑋𝑋2, … be iid random variables with the cumulative distribution function (CDF) 𝐹𝐹 𝑥𝑥

Define the empirical distribution function for 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 as

𝐹𝐹𝑛𝑛 𝑥𝑥 ≔
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝟏𝟏 𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥

Then, 𝐹𝐹𝑛𝑛 − 𝐹𝐹 ∞ = sup
𝑥𝑥

|𝐹𝐹𝑛𝑛 𝑥𝑥 − 𝐹𝐹 𝑥𝑥 |
 𝑎𝑎.𝑠𝑠. 

0

Proof (Key ideas).

1. Concentration: 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 ≈ 𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺  w.h.p.

2. Symmetrization:  𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 ≤ 2𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺  where 𝔼𝔼𝑅𝑅𝑛𝑛 𝑔𝑔 ≔ ⁄1 𝑛𝑛 ∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖  (Rademacher process)

3. Restriction: 𝐺𝐺 restricted to a finite-sized set to bound the Rademacher averages
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𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 = sup
𝑔𝑔∈𝐺𝐺

𝔼𝔼𝑃𝑃𝑛𝑛 𝑔𝑔 𝑋𝑋 − 𝔼𝔼𝑃𝑃 𝑔𝑔 𝑋𝑋 = sup
𝑔𝑔∈𝐺𝐺

�
𝑖𝑖=1

𝑛𝑛
1
𝑛𝑛
𝟏𝟏 𝑋𝑋𝑖𝑖 ≤ 𝑡𝑡 − 𝔼𝔼𝑃𝑃 𝑔𝑔 𝑋𝑋

• 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 is a function of 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛

• It has the bounded differences property:

sup
z

𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, 𝑧𝑧,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 − inf
𝑧𝑧

𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1, 𝑧𝑧,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛 ≤
1
𝑛𝑛

• McDiarmid inequality:  with probability at least 1 − exp(−2𝜖𝜖2𝑛𝑛),
𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 ≤ 𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 + 𝜖𝜖
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• Note that for iid samples 𝑋𝑋1′ , … ,𝑋𝑋𝑛𝑛′ , 𝔼𝔼 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑔𝑔 𝑋𝑋𝑖𝑖′ = 𝔼𝔼𝑃𝑃 𝑔𝑔

• Thus, we can introduce another 𝑛𝑛 iid samples 𝑋𝑋1′ , … ,𝑋𝑋𝑛𝑛′ , and get that

𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 = 𝔼𝔼𝑋𝑋𝑖𝑖 sup
𝑔𝑔∈𝐺𝐺

𝔼𝔼𝑋𝑋𝑖𝑖′
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑔𝑔 𝑋𝑋𝑖𝑖 − 𝑔𝑔 𝑋𝑋𝑖𝑖′

≤ 𝔼𝔼𝑋𝑋𝑖𝑖𝔼𝔼𝑋𝑋𝑖𝑖′ sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑔𝑔 𝑋𝑋𝑖𝑖 − 𝑔𝑔 𝑋𝑋𝑖𝑖′

= 𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛′ 𝐺𝐺

• The second step follows from Jensen inequality and the fact that sup ⋅  is convex
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• Since 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖′  are iid, for any 𝜖𝜖𝑖𝑖 ∈ −1,1 ,

𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝑔𝑔 𝑋𝑋𝑖𝑖 − 𝑔𝑔 𝑋𝑋𝑖𝑖′ = 𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖 𝑔𝑔 𝑋𝑋𝑖𝑖 − 𝑔𝑔 𝑋𝑋𝑖𝑖′

• The equality still holds if we take the expectation over 𝜖𝜖𝑖𝑖 ∼𝑖𝑖𝑖𝑖𝑖𝑖 −1,1  uniformly at random

𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 = 𝔼𝔼𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖′,𝜖𝜖𝑖𝑖 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖 𝑔𝑔 𝑋𝑋𝑖𝑖 − 𝑔𝑔 𝑋𝑋𝑖𝑖′

≤ 𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖 + 𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖′

= 2𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖 =∶ 2𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺
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𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺 = 𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖

• 𝐺𝐺 = 𝟏𝟏 𝑥𝑥 ≤ 𝑡𝑡 ∶ 𝑡𝑡 ∈ ℝ  has ∞-many elements

• For any fixed 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∈ ℝ, the restriction 𝐺𝐺 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 = 𝑔𝑔 𝑋𝑋1 , … ,𝑔𝑔 𝑋𝑋𝑛𝑛 ∶ 𝑔𝑔 ∈ 𝐺𝐺  has only 𝑛𝑛 + 1 
elements!

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 𝑋𝑋4 𝑋𝑋5 𝑋𝑋6 𝑋𝑋7
𝑔𝑔 𝑋𝑋𝑖𝑖 : 1 1 1 1 0 0 0
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𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺 = 𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖

• 𝐺𝐺 = 𝟏𝟏 𝑥𝑥 ≤ 𝑡𝑡 ∶ 𝑡𝑡 ∈ ℝ  has ∞-many elements

• For any fixed 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∈ ℝ, the restriction 𝐺𝐺 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 = 𝑔𝑔 𝑋𝑋1 , … ,𝑔𝑔 𝑋𝑋𝑛𝑛 ∶ 𝑔𝑔 ∈ 𝐺𝐺  has only 𝑛𝑛 + 1 
elements!

Lemma (Rademacher averages).  For a finite subset 𝐴𝐴 ⊆ ℝ𝑛𝑛 and 𝜎𝜎2 ≔ ⁄max
𝑎𝑎∈𝐴𝐴

𝑎𝑎 2
2 𝑛𝑛,

𝔼𝔼𝜖𝜖𝑖𝑖∼ ±1 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤
2𝜎𝜎2 log 𝐴𝐴

𝑛𝑛

𝔼𝔼 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 = 𝔼𝔼 sup
𝑎𝑎∈𝐴𝐴∪ −𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤
2𝜎𝜎2 log 2 𝐴𝐴

𝑛𝑛
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𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺 = 𝔼𝔼 sup
𝑔𝑔∈𝐺𝐺

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑔𝑔 𝑋𝑋𝑖𝑖

• 𝐺𝐺 = 𝟏𝟏 𝑥𝑥 ≤ 𝑡𝑡 ∶ 𝑡𝑡 ∈ ℝ  has ∞-many elements

• For any fixed 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∈ ℝ, the restriction 𝐺𝐺 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 = 𝑔𝑔 𝑋𝑋1 , … ,𝑔𝑔 𝑋𝑋𝑛𝑛 ∶ 𝑔𝑔 ∈ 𝐺𝐺  has only 𝑛𝑛 + 1 
elements!

Lemma (Rademacher averages).  For a finite subset 𝐴𝐴 ⊆ ℝ𝑛𝑛 and 𝜎𝜎2 ≔ ⁄max
𝑎𝑎∈𝐴𝐴

𝑎𝑎 2
2 𝑛𝑛,

𝔼𝔼 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤
2𝜎𝜎2 log 2 𝐴𝐴

𝑛𝑛

• In our case, 𝐴𝐴 ≤ 𝑛𝑛 + 1 and 𝜎𝜎2 ≤ ⁄𝑛𝑛 𝑛𝑛 = 1:

𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺 ≤
2 log 2 𝑛𝑛 + 1

𝑛𝑛



Glivenko-Cantelli Theorem: Putting Together

January 29, 2026 38

• Concentration:
Pr 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 ≤ 𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 + 𝜖𝜖 ≥ 1 − exp(−2𝜖𝜖2𝑛𝑛)

• Symmetrization:
𝔼𝔼 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 ≤ 2𝔼𝔼 𝑅𝑅𝑛𝑛 𝐺𝐺

• Restriction:

𝑅𝑅𝑛𝑛 𝐺𝐺 ≤
2 log 2 𝑛𝑛 + 1

𝑛𝑛

• Therefore,

Pr 𝑃𝑃𝑛𝑛 − 𝑃𝑃 𝐺𝐺 ≤
8 log 2 𝑛𝑛 + 1

𝑛𝑛
+ 𝜖𝜖 ≥ 1 − 𝑒𝑒−2𝜖𝜖2𝑛𝑛

∎
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Lemma (Rademacher averages).  For a finite subset 𝐴𝐴 ⊆ ℝ𝑛𝑛 and 𝜎𝜎2 ≔ ⁄max
𝑎𝑎∈𝐴𝐴

𝑎𝑎 2
2 𝑛𝑛,

𝔼𝔼𝜖𝜖𝑖𝑖∼ ±1 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤
2𝜎𝜎2 log 𝐴𝐴

𝑛𝑛

Proof.

• Consider the MGF:

exp 𝜃𝜃𝜃𝜃 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤ 𝔼𝔼 exp 𝜃𝜃 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 = 𝔼𝔼 sup
𝑎𝑎∈𝐴𝐴

exp 𝜃𝜃
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖

≤ �
𝑎𝑎∈𝐴𝐴

𝔼𝔼 exp 𝜃𝜃
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 = �
𝑎𝑎∈𝐴𝐴

�
𝑖𝑖=1

𝑛𝑛

𝔼𝔼 exp
𝜃𝜃𝑎𝑎𝑖𝑖
𝑛𝑛
𝜖𝜖𝑖𝑖

≤ �
𝑎𝑎∈𝐴𝐴

�
𝑖𝑖=1

𝑛𝑛

exp
𝜃𝜃2𝑎𝑎𝑖𝑖2

2𝑛𝑛2
= �

𝑎𝑎∈𝐴𝐴

exp
𝜃𝜃2 𝑎𝑎 2

2

2𝑛𝑛2
≤ 𝐴𝐴 exp

𝜃𝜃2𝜎𝜎2

2𝑛𝑛

(Hoeffding)
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Lemma (Rademacher averages).  For a finite subset 𝐴𝐴 ⊆ ℝ𝑛𝑛 and 𝜎𝜎2 ≔ ⁄max
𝑎𝑎∈𝐴𝐴

𝑎𝑎 2
2 𝑛𝑛,

𝔼𝔼𝜖𝜖𝑖𝑖∼ ±1 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤
2𝜎𝜎2 log 𝐴𝐴

𝑛𝑛

Proof.

• Consider the MGF:

exp 𝜃𝜃𝜃𝜃 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤ 𝐴𝐴 exp
𝜃𝜃2𝜎𝜎2

2𝑛𝑛

• Thus, we have

𝔼𝔼 sup
𝑎𝑎∈𝐴𝐴

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝜖𝜖𝑖𝑖𝑎𝑎𝑖𝑖 ≤
log 𝐴𝐴
𝜃𝜃

+
𝜃𝜃𝜎𝜎2

2𝑛𝑛
=

2𝜎𝜎2 log 𝐴𝐴
𝑛𝑛

 with 𝜃𝜃 ≔ ⁄2𝑛𝑛 log 𝐴𝐴 𝜎𝜎

∎
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Let 𝑋𝑋1,𝑋𝑋2, … be iid random variables. Define the empirical distribution 𝑃𝑃𝑛𝑛 by its CDF:

𝐹𝐹𝑛𝑛 𝑥𝑥 ≔
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

𝟏𝟏 𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥

Then, for the function family 𝐺𝐺 = 𝟏𝟏 𝑥𝑥 ≤ 𝑡𝑡 ∶ 𝑡𝑡 ∈ ℝ , we have

sup
𝑔𝑔∈𝐺𝐺

𝔼𝔼𝑃𝑃𝑛𝑛 𝑔𝑔 − 𝔼𝔼𝑃𝑃 𝑔𝑔
 𝑎𝑎.𝑠𝑠. 

0

• Generalizing the GC theorem to GC class (the function class that satisfies the uniform 
convergence)

• GC class is connected to the Vapnik-Chervonenkis (VC) dimension
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Let 𝒞𝒞 be a concept class of functions from a domain 𝒳𝒳 to −1,1 , and let the loss function 
be the 0-1 loss (i.e., 𝟏𝟏[𝑓𝑓 𝑥𝑥 ≠ 𝑦𝑦]). Then the following are equivalent:

1. 𝒞𝒞 has the uniform convergence property

2. 𝒞𝒞 is (agnostic) PAC learnable

3. 𝒞𝒞 is (realizable) PAC learnable

4. 𝒞𝒞 has finite VC dimension

5. 𝒞𝒞 is learnable by an ERM algorithm

Covered in CS 578 - Statistical Machine Learning by Anuran Makur
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